Submicrosecond pacemaker precision is behaviorally modulated: the gymnotiform electromotor pathway.

نویسندگان

  • K T Moortgat
  • C H Keller
  • T H Bullock
  • T J Sejnowski
چکیده

What are the limits and modulators of neural precision? We address this question in the most regular biological oscillator known, the electric organ command nucleus in the brainstem of wave-type gymnotiform fish. These fish produce an oscillating electric field, the electric organ discharge (EOD), used in electrolocation and communication. We show here that the EOD precision, measured by the coefficient of variation (CV = SD/mean period) is as low as 2 x 10(-4) in five species representing three families that range widely in species and individual mean EOD frequencies (70-1,250 Hz). Intracellular recording in the pacemaker nucleus (Pn), which commands the EOD cycle by cycle, revealed that individual Pn neurons of the same species also display an extremely low CV (CV = 6 x 10(-4), 0.8 micro sec SD). Although the EOD CV can remain at its minimum for hours, it varies with novel environmental conditions, during communication, and spontaneously. Spontaneous changes occur as abrupt steps (250 ms), oscillations (3-5 Hz), or slow ramps (10-30 s). Several findings suggest that these changes are under active control and depend on behavioral state: mean EOD frequency and CV can change independently; CV often decreases in response to behavioral stimuli; and lesions of one of the two inputs to the Pn had more influence on CV than lesions of the other input.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NADPH-diaphorase activity and nitric oxide synthase-like immunoreactivity colocalize in the electromotor system of four species of gymnotiform fish.

The electric organ discharge (EOD) of gymnotiform electric fish is controlled by a well-characterized neural circuit in the brainstem and spinal cord. NADPH-diaphorase (NADPH-d) activity was previously found in phase-locking and/or rapidly firing neurons in the electromotor and electrosensory systems of Apteronotus leptorhynchus [Turner and Moroz, 1995]. These findings suggested that nitric oxi...

متن کامل

Different classes of glutamate receptors and GABA mediate distinct modulations of a neuronal oscillator, the medullary pacemaker of a gymnotiform electric fish.

Gymnotiform electric fish generate distinct communicatory signals by modulating the rate of their electric organ discharges (EODs). Each EOD is triggered by a command pulse from the medullary pacemaker nucleus (PN), which contains pacemaker cells and relay cells. The firing rate of this nucleus is modulated by inputs from the diencephalic prepacemaker nucleus (PPN). The NMDA receptor blocker AP...

متن کامل

Mauthner cell-initiated electromotor behavior is mediated via NMDA and metabotropic glutamatergic receptors on medullary pacemaker neurons in a gymnotid fish.

Weakly electric fish generate meaningful electromotor behaviors by specific modulations of the discharge of their medullary pacemaker nucleus from which the rhythmic command for each electric organ discharge (EOD) arises. Certain electromotor behaviors seem to involve the activation of specific neurotransmitter receptors on particular target cells within the nucleus, i.e., on pacemaker or on re...

متن کامل

The midbrain precommand nucleus of the mormyrid electromotor network.

The functional role of the midbrain precommand nucleus (PCN) of the electromotor system was explored in the weakly electric mormyrid fish Gnathonemus petersii, using extracellular recording of field potentials, single unit activity, and microstimulation in vivo. Electromotor-related field potentials in PCN are linked in a one-to-one manner and with a fixed time relationship to the electric orga...

متن کامل

Calretinin-like immunoreactivity in mormyrid and gymnarchid electrosensory and electromotor systems.

Calretinin-like immunoreactivity was examined in the electrosensory and electromotor systems of the two families of mormyriform electric fish. Mormyrid fish showed the strongest immunoreactivity in the knollenorgan electroreceptor pathway; in the nucleus of the electrosensory lateral line lobe (ELL) and the big cells of the nucleus exterolateralis pars anterior. Mormyromast and ampullary zones ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 95 8  شماره 

صفحات  -

تاریخ انتشار 1998